If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+12x-153=0
a = 3; b = 12; c = -153;
Δ = b2-4ac
Δ = 122-4·3·(-153)
Δ = 1980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1980}=\sqrt{36*55}=\sqrt{36}*\sqrt{55}=6\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{55}}{2*3}=\frac{-12-6\sqrt{55}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{55}}{2*3}=\frac{-12+6\sqrt{55}}{6} $
| 5x-1+3x+4+4x-3=180 | | 4x-8x=7(x-2)-8 | | 2x(4-3x)=16 | | 3w-8=32 | | 512^x+4=12 | | 20+4/3r=20 | | /54(x+2)=x | | 12y-9y-10=52.37 | | 8-3w=32 | | 180-11+7+1+17=x | | x/36.52=1.1/8.3 | | 3n-9=2n | | 3(1+2p)+7p=94 | | -9=2u+7 | | 4(x+2)=x/5 | | -x^2+99=0 | | 2/3m-1/3=5/18 | | 7x+x+6=x | | 3.5x-13=3x+5 | | (9x-93)+(8x-50)=180 | | -3(2-8r)=7r-(6r+6) | | -3.50s=21 | | -4(2y-1)+9y=7(y+2) | | 4y^2+68y-289=0 | | -4(2y-1)+9y=7(y-2) | | -3+12=4w-5 | | 7x+16=40+5x | | 5(u-6)-3=-3(-5u+8)-4u | | 0=5z-39 | | 5y-3y-5=27.06 | | x+25/6=3 | | 2/5(-6x+5)=-1/4(7x-10)+4/3(2x-5) |